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The results of laboratory wall turbulence experiments on a shear-driven rotating
boundary layer are presented. The experiments were carried out in the Turin University
Laboratory rotating water tank. The flow was generated by changing the rotation
speed of the platform and measured by means of particle image velocimetry. In order
to analyse the influence of the rotation and of surface roughness, different cases
were examined. Several rotation periods were considered. The measurements were
performed both over a smooth surface and over a rough-to-smooth transition. Mean
flows and the higher-order moments of the velocity probability density function are
shown and discussed together with a comparison of the different experimental cases,
theory and large-eddy simulations.

1. Introduction
The aim of this work is to investigate the higher order moments (HOMs) in a

neutral, shear-driven, rotating boundary layer. This is a topic of great interest in
many research fields such as fluid dynamics, atmospheric physics, astrophysics, and
oceanography. The shear-driven boundary layer has been studied from many points
of view both experimentally and theoretically. The experimental works include both
field and laboratory measurements. In particular, the possibility of easily changing the
values of the external governing parameters of the boundary layer and the boundary
conditions makes the latter a useful tool for investigations.

Second- and third-order moments were theoretically investigated by Hunt &
Carlotti (2001). In that paper the statistical structure in the surface layer at the wall
was studied and the presence of an eddy surface layer, where an internal boundary
layer (IBL) can develop, was shown.

Experimental measurements were performed by Drobinski et al. (2004) who
analysed sonic anemometers, rawinsondes and Doppler Lidar data to investigate
the layered structure of the surface layer and to provide observational evidence of the
eddy surface layer. In a second paper (Drobinski et al. 2007) they showed the different
nature of turbulence near the wall in terms of organized eddies, velocity fluctuation
spectra and second-order moments statistics, comparing measurements and LES data.
The structure of the turbulent boundary layer, in near-neutral conditions, was studied
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by Grant (1986, 1992) carrying out field experiments, while measurements from
aircraft over the sea were performed by Nicholls & Readings (1979).

Among numerical models, Moeng & Sullivan (1994) presented numerical large-
eddy simulation (LES) results of the second- and third-order moments of atmospheric
turbulence under the Earth’s Coriolis effect. The structures that developed in a
neutrally stratified boundary layer were investigated by Lin et al. (1996) by analysing
turbulent kinetic energy, momentum fluxes and vorticity fields in LES accounting for
the Coriolis force and roughness.

The boundary layer turbulent structure is shown by the turbulence HOMs which
are crucial for investigating its non-local nature (Zilitinkevich et al. 1999; Ferrero
& Racca 2004) and for estimating the departure of the velocity probability density
function (PDF) from the widely used Gaussian (quasi-normal, QN) approximation
(Monin & Yaglom 1971; Hanjalic & Launder 1972, 1976; Zeman 1981). It should be
mentioned that the QN approximation was recently criticized and some attempts to
overcome its limitations (namely the unphysical growth of the third-order moments
and the moment oscillation in the stable layer) have been made (Cheng, Canuto &
Howard 2005; Gryanik & Hartmann 2005).

The importance of the determination of the HOMs is highlighted through the need
to compare recently developed numerical models based on the averaged Reynolds
stresses (Ferrero 2005; Cheng et al. 2005) and measured profiles. Field experiments
provide some data sets, but, due to the estimation problems, they rarely include higher-
order statistics, up to the fourth order (Hartmann et al. 1999), and the comparison
with model data is generally difficult (Qian et al. 2000). These data are usually
obtained by wind tunnel experiments (Khurshudyan, Snyder & Nekrasov 1981, Ohba
et al. 2002), that do not generally include the rotation effects, or from LES (Moeng
& Sullivan 1994; Rizza et al. 2003) and direct numerical simulations (DNS) (Mason
& Thomson 1987; Coleman, Ferzinger & Spalart 1990).

In this paper the HOMs behaviour is analysed by focusing on two key aspects:
the effects of rotation of the reference frame and the influence of an heterogeneous
surface on the wall-normal structure of the near-wall boundary layer. Coriolis forces
are usually investigated in atmospheric topics, but they are also pertinent to theoretical
fluid dynamic aspects.

Extended reviews of the dynamics connected to rotation have been given by
Bidokhti & Tritton (1992), who reported laboratory experiments on the turbulence
development, and structure in the free shear layer (Pedlosky 1987; Tritton 1988).

In a previous work (Ferrero et al. 2005), our group studied the boundary layer
developed in a rotating reference frame (‘Coriolis’ turntable) restricting the analysis
to the second-order moments of turbulence. We concentrated our attention on the
similarities with an atmospheric boundary layer but did not modify the tank revolution
time.

In this paper a shear-driven boundary layer was created in the Turin University
Rotating Laboratory (TURLab) of the Department of General Physics water tank.
The roles played by the rotation and by the transition from a rough to smooth
wall in the development of organized turbulent structures which are responsible for
the non-local transport are investigated by analysing the turbulent statistics and in
particular the HOMs.

Turbulence statistics are compared with numerical data, disregarding the possible
differences arising from the streamline curvature present in our laboratory
experiments. This limitation in the comparison might explain some of the discre-
pancies found.
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Figure 1. Experimental setup: measurement field (laser sheet) (shown in grey) and roughness
element placements. B indicates the measurement field edge and C, D and E are the locations
where the profiles were evaluated. The black arrow shows the flow direction outside the Ekman
layer.

In § 2 the PIV technique, the experimental apparatus and the instrumentation are
presented, while, in § 3, results of the experiments are presented and discussed through
comparison with theoretical and numerical previous findings. Finally, in § 4, the main
results and conclusions are summarized.

2. The laboratory experiment
2.1. PIV measurements

The laboratory experiments took place at the TURLab using a hydrodynamic rotating
tank. The facility is composed of a 5m diameter cylindrical tank, able to reach a
maximum rotation speed of 20 revolutions per minute. The data were acquired by a
non-intrusive PIV technique which allows the detection of Eulerian velocity fields.

The presented experiments were carried out by spreading passive tracers in the
water inside the tank, lit by a light sheet produced by a green diode laser coupled
with a beam expanding optical device, while a high-resolution digital camera recorded
snapshot sequences of the flow at adjustable time rates. The diameter of the passive
tracers was 30 µm, the water depth 40 cm and the camera frame rate 107.6 Hz (except
for case 1B where it was 269.0 Hz). To avoid reflection problems, the laser sheet came
directly out from an optical crystal located inside the tank bottom (see figure 1).
The flow was analysed on a rectangular grid of about 10 × 8 cm2. Most of the images
were sufficiently good to allow the use of a rectangular interrogation window of about
30 × 20 pixels, giving a final resolution of about 60 × 80 vectors (the exact number
changes slightly in the different experiments, due to small differences in the camera
view fields).

2.2. Experimental setup

Since we were interested in the effect of both rotation and surface roughness on
the boundary layer development, the shear effects were evaluated for two different
configurations of the tank floor: a flat smooth wall and a rough area followed by
a smooth surface (rough-to-smooth). This second condition was obtained by gluing
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Exp. Surface Reδ Ref U0 (cm s−1) uτ (cm s−1) δ (cm) T1(s) Roδ

case 0 smooth 5390 550 9.8 0.5 5.5 100 0.7

Table 1. Estimated parameters for the basic case.

plastic roughness elements on the tank floor before and around the measurement
region, as shown in figure 1. Each element was 2 cm wide, 1.2 cm high and the
mean distance between the elements was about 4 cm. The laser sheet was in a plane
normal both to the tank bottom at a distance of 186 cm from the centre and to
the radius along the camera axis. For the laser sheet exit, an area 1 cm wide and
50 cm long, corresponding to the window through which the laser sheet shone, was
left free of roughness elements. As shown in figure 1 an area about 10 cm wide in
front of the laser sheet was also left free from roughness elements in order to allow
the camera view of the measurement sections and to avoid laser reflections. Hence,
even though, in the Ekman layer the flow was not strictly azimuthal but an inward
component develops, in the rough-to-smooth case, this crossflow was not influenced
by the roughness elements surrounding the measurement area.

In the following, we will take x and y as the downstream tangential wall-parallel
and the cross-stream wall-normal directions respectively.

A mean flow U (r) at the distance r from the centre of the tank can be created
by changing the tank rotation speed as described by Ferrero et al. (2005). The laser
sheet was placed tangential to the tank circumference and hence it was aligned with
the mean flow outside the boundary layer. This is the flow component we measured.
We performed a series of experiments with different velocities (obtained by choosing
different values for the initial (T0) and final (T1) rotation periods).

A first experiment was carried out over the smooth surface and with a relatively
small rotation (T1 = 100 s) in order to compare it not only with the classical
boundary layer theory, but also with some previous experimental works and numerical
simulations (Adrian, Meinhart & Tokins 2000), (Coleman et al. 1990; Moeng &
Sullivan 1994).

The angular velocity of the tank was changed in the next two experiments (rotation
periods: T1 = 40 s for case 1A and T1 = 10 s for case 1B), while the surface configuration
was left unchanged. Then, in cases 2A and 2B the rotation period was kept constant
while the surface configuration was modified, case 2A: was for a smooth surface
and case 2B for a heterogeneous surface. The aim of this analysis is to compare two
cases which differ only in the rotation and two cases which differ only in the surface
roughness.

The main parameters for the different experiments are summarized in tables 1, 2
and 3.

2.3. PIV analysis

The PIV software identifies the displacements of clustered seeding elements through
cross-correlation techniques, and then evaluates the flow velocity field in the monitored
region (Fincham & Spedding 1997; Bernero & Fiedler 2000): the experiments produce
a time series of images of the fluid, which are cross-correlated pair by pair to obtain
the displacements of particle patches over a sufficiently small time interval and spatial
domain (Raffel, Willert & Kompenhans 1998).
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Exp. Surface Reδ Ref U0 (cm s−1) uτ (cm s−1) δ (cm) T1 (s) Roδ

case 1A smooth 1120 230 6.4 0.23 2.6 40 0.4
case 1B smooth 1120 110 6.4 0.28 2.8 10 0.1

Table 2. Estimated parameters for the two cases over the same surface with different
rotation velocity.

Exp. Surface Reδ Ref U0 (cm s−1) uτ (cm s−1) δ (cm) T1 (s) Roδ

case 2A smooth 3115 500 8.8 0.5 3.5 100 1.1
case 2B (0.5 hr ) sm-to-rough 6090 490 8.8 1.1 7.0 100 1.3
case 2B (3.5 hr ) sm-to-rough 6090 490 8.8 0.8 7.0 100 0.9
case 2B (6.6 hr ) sm-to-rough 6090 490 8.8 0.7 7.0 100 0.8

Table 3. Estimated parameters for the two cases over different surfaces with the same
rotation velocity.

Thereafter, the correlation image velocimetry (CIV) algorithm (Fincham &
Spedding 1997) is applied to calculate the two-dimensional velocity vectors on an
irregular planar grid. To achieve accurate velocity values, CIV results need to be
filtered to remove bad vectors; the filtering operations are performed step by step,
starting from a scatter analysis of the velocity distribution, and then using local
mean/median algorithms developed at the TURLab. A final patch procedure has to
be applied to compute the vector field over a regular grid.

Following Adrian et al. (2000), we verified that the ratio between the particle image
size and the pixel size was greater than 4 (Prasad et al. 1992). The maximum value
over all the experiments considered here was about 12. In this case the uncertainty of
the measurements is roughly from one-tenth to one-twentieth of the particle-image
diameter. Dividing these values by the mean particles displacement, the relative error
in the velocity can be obtained. In our case we found about 6 %, which coincides
with the values found by Tarbouriech, Didelle & Renouard (1997) for a PIV system
developed, like the one used in our experiments, from Fincham & Spedding (1997).
Note that the maximum size of the particles images (12 pixels) does not correspond
to the size of the particle itself, but owing to its movement and to the exposure time
during the acquisition, it can appear longer than if it were at rest in the flow direction
(as a short streak). This value corresponds to the maximum length in the free shear
layer, while the particle width was always about 5 pixels. In the turbulent layer the
particle-image size was about 5 × 5 pixels.

In order to carry out a statistical description of the flow we acquired 1400 images
with a time interval of 9 × 10−3 s (except for case 1B where it was 4 × 10−3 s), so the
total group of images corresponded to a time interval of 12.6 s (5.6 s for case 1B).
For calculating the profiles of the turbulence moments presented here, we considered
every pair of images as an element of the statistical sample made up of 1400 factors
(every image is part of two pairs) and computed the mean over the whole ensemble
of 1400 fields. The data stationarity was checked with a test run (Bendat & Piersol
1986) with a significativity level of 5 %.

The profiles of the mean flow and turbulence moments were obtained by averaging
both in time and space (about 70 × 1400 grids points), except for the case of non-
homogenous surface for which only time average was applied. Note that the flow is



126 E. Ferrero, R. Genovese, A. Longhetto, M. Manfrin and L. Mortarini

homogeneous in a plane parallel to the bottom wall in the smooth cases, whilst in the
rough-to-smooth one the assumption of homogeneity cannot be made for the whole
domain in the downstream direction, where flow adjustment and internal boundary
layer development are expected (Rao, Wyngaard & Coté 1973). Therefore, the spatial
mean in the downstream direction was not computed. The average is indicated by
the symbol 〈 · 〉.

The high frequency of the PIV system allows the small-scale turbulence to be
resolved. The convergence of the moments has been verified following Lenschow,
Mann & Kristensen (1994), who demonstrated that it depends on the ratio between
the integral time scale and the sample time. In our experiments the integral time
scale (evaluated according to Gluhovsky & Agee (1994)) varies from 0.03 s to 0.2 s,
which corresponds to a ratio with the sample time of 0.006 and 0.015 respectively.
Our choice of the sample time length was the best compromise among three factors:
it should be short enough to guarantee the stationarity of the data and not exceed
the memory of the acquisition storage, and at the same time be as long as possible to
ensure the HOMs convergence.

3. Results
First, the characteristic parameters of the boundary layer, namely friction velocity uτ

and boundary layer height δ, were evaluated. The friction velocity uτ was estimated as
the square root of the maximum value of the total shear stress given by the turbulent
and the viscous stress summation:

uτ =

√(
−〈u′v′〉 + ν

∂U

∂y

)
, (3.1)

where u = U + u′, v = V + v′, upper case indicating mean values and primes the
fluctuations λ; ν is the kinematic viscosity. Since we only measured the wall-parallel
(u) and wall-normal (v) components of the velocity fields, the turbulent kinetic energy
k was estimated by assuming the variance of the spanwise component equal to one
half of 〈u′2〉 (Drobinski et al. 2004), then boundary layer depth δ was deduced as the
height at which k vanishes:

k = 1
2
(〈u′2〉 + 0.5〈u′2〉 + 〈v′2〉). (3.2)

In tables 1, 2 and 3, the estimated parameters (uτ , δ) for the five cases considered
are summarized together with the asymptotic velocity U0, the final rotation period T1,
the Reynolds numbers Reδ and Ref , and the Rossby number Roδ = δf /δ, defined as
the ratio between the scale of the rotating turbulent boundary layer δf = uτ/f and
boundary layer thickness δ. The first column in table 3 also reports, for case 2B, the
distance (point C, D or E in figure 1) from the measurement field edge in terms of
the roughness element height hr = 1.2 cm.

For comparison two different Reynolds numbers were estimated, Reδ and Ref

(Coleman et al. 1990), using two length scales. Reδ = uτ δ/ν takes the boundary layer
depth δ as a length scale, and consequently indicates how the turbulence generated
by the shear of the mean flow develops. On the other hand, Ref = U0/(

1
2
νf )1/2 takes

into account the Ekman layer depth
√

2ν/f , showing the role of the rotation in the
turbulence development.

The measurements were performed during the velocity decay after an abrupt
change of rotation; the characteristic time scale of this decay was much longer than
the measurement time. We verified the data stationarity with an approprate test, as
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Figure 2. Normalized mean velocity vs. normalized wall distance. �, measurements; solid
line, log-law for y+ > 10; dashed line, U+ = y+ for y+ < 10.

previously described above. In cases 0, 2A and 2B, the tank was spun down while
1A and 1B correspond to a spin up. The initial periods were 162 s (case 1A), 104.5 s
(case 1B), 35 s (case 2A), 35.5 s (case 2B), 35 s (case 0); the duration of the rota-
tion velocity change was of the order of a few seconds; the delay between the
change and the aquisition was between 500 s and about 1000 s. The distance of
the measurament plane from the rotation axis was 1.86 m. Finally, the mean velocity
decreases during the acquisition by about 1 % (except for the rough-to-smooth case
2B in which was about 3 %) without violating the stationarity (see § 2.3).

3.1. Basic case

First, an experiment at low rotation speed (T1 = 100 s) (case 0) was carried out in
order to verify the consistency of our measurements with the boundary layer theory
and other previous works. The effect of the streamline curvature was disregarded.
Hence the measurement results are compared with literature data where the streamline
curvature effect is not present.

In figure 2 a comparison between U+, the measured mean velocity normalized with
uτ , as a function of the normalized distance y+ = yuτ/ν, and the log-law (Millikan
1938) is shown. For comparison the line U+ = y+ is also shown, although no data
are available for y+ < 10. Unfortunately, close to the wall a layer of high particle
concentration reflects the laser sheet in the glass and prevents the PIV analysis in this
region.

The measured profile agrees with the log-law, which is derived for a non-rotating
boundary layer, in a layer between y+ = 10 and y+ = 102, then it departs from the
theoretical law showing the overshoot due to the Ekman layer.

The log-law applies in a layer whose depth is reduced by the rotation as observed
by Coleman et al. (1990). The best fit of the data is obtained with the following
log-law:

U (y)

uτ

=
1

kv

ln
yuτ

ν
+ B (3.3)

where the constant B = 4.2 is within the values previously found in the literature
3.5 <B < 6.1 (Zanoun, Durst & Nagib 2003), and kv = 0.4 is the von Kármán
constant.

Case 0 was assumed to be the close to the reference LES case of Moeng & Sullivan
(1994), even through the Rossby number was one tenth of that of the LES. However a
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Figure 3. Case 0: normalized SOMs vs. normalized wall distance. �, measurements;
×, LES data.

comparison with the LES profiles confirms that the effect of the rotation was similar
in the two (simulated and measured) cases. Further the Rossby number for case 0 was
of the order of one, hence the boundary layer and rotation based heights were very
similar suggesting that the influence of the rotation on the boundary layer turbulence
was negligible. This Rossby number value can be considered as a critical value for
the rotation. In the other cases (1A and 1B), characterized by different rotations, the
Rossby number reduces by about one half or more, suggesting the influence of the
rotation on the developed turbulence.

Figure 3(a–d) show the velocity fluctuation second-order moments (SOMs) profiles,
normalized with u2

τ , as a function of the wall distance, normalized with the boundary
layer depth δ. It can be observed that their trends qualitatively agree with the profiles
from Adrian et al. (2000) in a non-rotating laboratory experiment and with the results
of rotating numerical experiments carried out by Coleman et al. (1990), both at low
Reynolds numbers. In figure 3 the results of the LES by Moeng & Sullivan (1994)
are also shown for comparison. Both wall-normal and wall-parallel variances show
measured values similar to those of the LES in the whole boundary layer except
in the proximity of the wall (δ < 0.1) where the subgrid-scale (SGS) model of the
LES is dominant in resolving the small-scale features. Considering the discussion by
Drobinski et al. (2004, 2007) on the contribution of Moeng & Sullivan’s (1994) SGS
scheme to their vertical velocity variance, the SGS model seems to dominate up to
about 0.1δ only. However, the numerical simulation performed by Ferrero (2005),
using a third-order model, suggests that discrepancies between higher-order closure
and the SGS model can be found up to about 0.2δ.

Furthermore the LES refers to an atmospheric boundary layer, characterized by a
Reynolds number much higher than those of our experiment. On the other hand the
Rossby number Roδ = δf /δ in the LES case (Roδ = 10) is just an order of magnitude
bigger than in our laboratory experiment (Roδ = 0.7).

Concerning the streamwise shear stress (figure 3a), it can be observed that the
measured values decrease more rapidly with the distance from the wall, reaching zero
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Figure 4. Case 0: normalized TOMs vs. normalized wall distance. �, measurements;
×, LES data.

at about 0.5δ. This can be related to the Rossby number in the experiment being
smaller than in the LES. The higher rotation, which is characterized by lower Rossby
number, reduces the streamwise momentum flux at large distances, while the spanwise
shear production could probably become dominant, explaining the turbulent kinetic
energy production up to δ.

Another aim of this work is to investigate the presence of instabilities that can
develop and give rise to large organized structures, through the third-order moments
(TOMs) analysis. Such structures are also responsible for the turbulent non-local
transport which can be described by the TOMs of the velocity PDF. As is well
known, in turbulence models the non-local transport is described through the TOMs,
which can be thought as the fluxes of fluxes (Zilitinkevich et al. 1999). Hence, the
large departure of TOMs from the Gaussian value (which is zero) corresponds to the
effect due to the large structures possibly present in the boundary layer.

Ferrero & Racca (2004) recently showed that to correctly predict the boundary
layer depth in neutral shear-driven turbulence the TOMs have to be taken into
account. For these reasons, in order to improve the investigation of the boundary
layer developed in the laboratory, the TOMs of the turbulent velocity PDF were also
calculated.

In figure 4(a–d) the profiles of the TOMs (normalized with u3
τ ) are depicted as

a function of the normalized distance (y/δ). The LES data available in Moeng &
Sullivan (1994) are also reported for the moments. The results of the comparison
demonstrate that the LES data for the TOMs, are compatible with those of the
experiment. Only the 〈v′3〉 profile shows some discrepancies in a layer close to the
wall. However it should be emphasized that the LES results can be considered
for comparison with TOMs only in the layer where the size of the eddies is large
enough to be resolved by the model grid. In the proximity of the wall, where the
turbulence scale is smaller, the TOMs cannot include the SGS model contribution,
because it adopts a second-order closure, and hence shows an erroneous behaviour
for the HOMs (Moeng & Sullivan 1994). These discrepancies in some cases appear
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for distances greater than 0.1 δ, the value suggested by Drobinski et al. (2004, 2007).
However similar differences were found by Ferrero (2005).

All the TOMs show non-negligible values from the wall up to about one half of
the boudary layer thickness, except for 〈u′3〉, which shows very high values only in
a thin layer close to the wall. Consequently wall-normal transport of turbulence is
present in the whole boundary layer, due probably to large-scale structures which, as
found in previous works, can develop not only in stratified flows but also in purely
shear-driven boundary layers (Adrian et al. 2000; Ferrero & Racca 2004; Drobinski
et al. 2004).

The nature of these structures, which depends on the Reynolds number, is not yet
clearly understood. In boundary layers simulated in non-rotating wind tunnels they
are known as horseshoes or hairpins (Adrian et al. 2000), while in large-scale flows
such as geophysical flows, they are called streaks or rolls (Drobinski et al. 2004;
Moeng & Sullivan 1994).

For low Reynolds numbers Coleman et al. (1990) demonstrated with a DNS the
presence of longitudinal roll vortices in a shear-driven boundary layer. On the other
hand, Mason & Sykes (1980) were able to find roll-like eddies in a two-dimensional
simulation with a finite-difference model of the Boussinesq equations but Mason &
Thomson’s (1987) (three-dimensional) LES did not confirm their presence.

Thanks to our PIV system we can calculate up to the fourth-order moments
(FOMs). Besides being useful in the determination of the shape of the velocity PDF,
these quantities are particularly interesting because they allow one to assess and to
check the validity of the well-known quasi-normal (QN) approximation (Hanjalic
& Launder 1972, 1976; Zeman 1981) based on the Millionshchikov Hypothesis
(Monin & Yaglom 1971) and considered in the eddy-damped quasi-normal Markovian
(EDQNM) approximation (Lesieur 1997), widely adopted in turbulence models to
close the FOMs (Canuto 1992; Ferrero 2005). This approximation postulates that the
FOMs can be expressed as a combination of the second-order moments assuming a
Gaussian distribution:

〈a′b′c′d ′〉 = 〈a′b′〉〈c′d ′〉 + 〈a′c′〉〈b′d ′〉 + 〈a′d ′〉〈b′c′〉 (3.4)

Unfortunately, FOM measurements are not usually available with enough precision
to evaluate small departures from the QN approximation.

In figure 5 the FOMs, normalized with u4
τ are shown toghether with the

corresponding moments given by the QN approximation. It can be observed that
the FOMs generally agree with the QN approximation profiles, although some
discrepancies appear.

3.2. Rotation effect

In order to assess how the rotation can modify the flow structure, regarding the mean
velocity and the turbulence, we carried out a series of experiments at higher rotation
speed. We show here a comparison between two cases characterized by a rotation
period of 40 s (1A) and 10 s (1B) (table 2).

In figure 6 the normalized mean velocity (U+ = U/uτ ), as a function of the
normalized distance from the wall (y+ = yuτ/ν), is depicted for the two rotation
speeds. The discrepancies in the asymptotic values depend on the differences in uτ

generated by the rotation. The typical overshooting characteristic of the Ekman layer
can be observed.

The normalized shear stress, the streamwise and the wall-normal variances, and the
resulting turbulent kinetic energy k (normalized with u2

τ ) are shown in figure 7(a–d).
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All moment profiles are consistent with the previous, slow rotating, case and LES
data, but, the influence of the faster rotation can be observed. The shear stress trends
show similar behaviour in the two cases. They reach a maximum (negative) value at
different distances from the wall, which decreases with the rotation period.

The value of 〈u′2〉 is higher in the case 1B close to the wall, and it decreases more
rapidly with the distance than case 1A.

The profile of 〈v′2〉 presents a maximum at about one half of the boundary layer
height in case 1A and at about 0.3 δ, when the rotation period reduces in case 1B.

The magnitude of the streamwise variance is larger than the wall-normal one, hence
the behaviour of k reproduces that of 〈u′2〉 one, as can be observed in figure 7 (d).

In conclusion, the increasing rotation speed seems to make the turbulent layer
shallower and to reduce the distance at which the turbulent moments attain their
maximum value. Turbulence develops in a deeper layer if the rotation speed is slower
and shows higher intensity close to the wall for faster rotation.
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TOMs (normalized with u3
τ ) measured for cases 1A and 1B are depicted in

figure 8(a–d). The general behaviour is similar to case 0, though some discrepancies
appear. Differences are also found between cases 1A and 1B. The positions of maxima
are observed to be located farther away for slower rotation speed, as in case 1A, which
shows a deeper turbulent layer. As TOMs are related to the turbulent transport, this
means that organized structures develop more in a boundary layer characterized by
slight rotation. There is an unexpected negative maximum 〈v′3〉, more pronounced in
case 1B, indicating a counter-gradient region.

The FOMs and QN approximation (normalized with u4
τ ) for experiments 1A

and 1B (figure 9a–d) demonstrate that, in the case of faster rotation speed, the
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QN hypothesis is not able to reproduce the exact behaviour of the measured
moments, underestimating the FOM profiles, as also found in atmospheric (Gryanik
& Hartmann 2005) and oceanic (Losch 2004) flows, with the exception of the 〈u′4〉
profile. The agreement is less satisfactory when the rotation speed increases, thus
showing that the rotation modifies the PDF of the velocity fluctuations.

In figure 10 the kurtosis (Ku) of the normal velocity component v′ is depicted as a
function of its skewness (S). It can be seen that the values measured in cases 1A and
1B are above the curve corresponding to the relation found by Tampieri, Maurizi &
Alberghi (2000) for sheared flow:

Ku = 3.3(S2 + 1) (3.5)

and above the curve corresponding to the statistical limit Ku � (S2 + 1).
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Figure 11. Case 2: mean velocity vs. normalized wall distance. �, case 2A;
×, case 2B (0.5 hr ); �, case 2B (3.5 hr ); �, case 2B (6.6 hr ).

Equation (3.5) was found by fitting the relation Ku = α(S2 + 1) with the vertical
velocity component measured in the laboratory, where a purely shear-dominated flow
was reproduced. Tampieri et al. (2000) also suggested that lower values of α should
correspond to the purely convective case.

For comparison data corresponding to case 0 are also shown in figure 10. It can be
observed that they agree quite well with the law (3.5).

In a subsequent analysis Maurizi (2006) demonstrated that values above the curve
given by equation (3.5) correspond to damping terms for the turbulent kinetic
energy, which proves that a higher rotation speed increases the turbulent flow
stability.

Concerning the QN approximation, figure 10 shows that it fails for cases 1A and 1B,
while it can be considered acceptable for case 0, which is characterazed by a slower
rotation speed. In fact, the kurtosis approaches the value of 3 when the skewness is
close to zero as prescribed by the QN approximation Ku = 3(S2 + 1).

3.3. Surface effect

The last comparison we performed is between two experiments carried out over
different surfaces. In the first one the wall surface was smooth while the second one
was characterized by a transition from a rough to a smooth surface, as described in
§ 2. The main parameters are summarized in table 3.

Looking at figure 11, where the profiles of the measured mean velocity are shown,
it can be observed that the smooth case 2A exhibits a simple logarithmic behaviour,
whereas the rough-to-smooth profiles clearly show the fine structure due to the
evolution of an internal boundary layer.

The profile closest to the transition presents the typical behaviour of a boundary
layer above surface roughness, showing a deeper shear layer and hence a larger uτ .
The profiles farther from transition accelerate over the smooth surface in the lower
layers in order to reach the new equlibrium state, which exhibits a trend similar to
that of the smooth case 2A and a decreasing stress uτ (see table 3).

This suggests that the flow is not horizontally homogeneous because the roughness
elements placed upstream generate instabilities which, advected by the flow, propagate
downstream.

SOM profiles of the developed turbulence in the boundary layer (normalized with
u2

τ ) are depicted in figure 12(a–d). 〈u′v′〉 and 〈u′2〉 show that the further the flow
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Figure 12. Case 2: normalized SOMs vs. normalized wall distance. �, case 2A;
×, case 2B (0.5 hr ); �, case 2B (3.5 hr ); �, case 2B (6.6 hr ).

travels over the smooth surface, the further the wall distance of their maximum value
increases. This is about 0.2δ, 0.3δ and 0.4δ for the profiles taken at distances from
the measurement field edge of 0.5 hr , 3.5 hr and 6.6 hr respectively, giving rise to the
following non-dimensional relationship for the ratio of the increment of the moment
maximum distance from the wall �y to the downstream distance increment �x:

�y

�x
=

1

30

δ

hr

. (3.6)

The distance of the maximum from the wall can be considered to be the depth of
an internal boundary layer which grows with the downwind distance as shown by
LES performed by Glendening & Lin (2002).

TOMs (normalized with u3
τ ) for both smooth and rough-to-smooth cases (2A and

2B in table 3 ) are reproduced in figure 13(a–d). Roughness elements in case 2B act
as a trigger for the large turbulent structures which increase the non-local transport
inside the boundary layer, as it is confirmed by TOM profiles downstream of the
roughness elements. While the closest profiles (0.5hr ) are similar to the smooth case,
the farthest ones (3.5 hr and 6.6 hr ) are larger than in the smooth case.

The TOMs measured over a smooth surface show a regular profile with a definite
sign and, as already mentioned, their behaviour is similar to that obtained in numerical
simulations using both LES (Moeng & Sullivan 1994) and Reynolds stress averaged
models (Ferrero 2005). On the contrary, the profiles corresponding to the case of
rough-to-smooth transition alternate in sign crossing zero at about 2 hr .

The boundary layer splitting into two parts with different turbulent moments
behaviours is typical of the turbulence generated by a canopy (Raupach, Coppin &
Legg 1986) where the roughness element height is an essential parameter for the flow
description.

In figure 14 the FOMs (normalized with u4
τ ) obtained in experiment 2B are shown.

For comparison the QN approximation results are also depicted. The FOMs profiles
closest to the transition from the rough to the smooth surface have larger values than
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those at greater distances. The QN hypothesis seems to be a good approximation of
the measured FOM only in the case of the farthest profiles, while it fails when the
profile closest to the transition is considered.

Figure 15 presents the kurtosis as a function of the skewness in the 2A and 2B
cases. It can be observed that these values are almost entirely below the curve given
by equation (3.5). Following Maurizi (2006), these results, showing that most of the
values are below the Ku = 3 line, indicate that the flow is unstable, as expected due
to the presence of high roughness elements upstream. Even though the discrepancies
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are not as large as in cases 1A and 1B the QN hypothesis seems to fail in this case
as well.

As observed by Cheng et al. (2005) the departure from the QN approximation can
be interpreted as related to the non-local nature of the turbulent flow.

4. Conclusions
The results of experiments reproducing a shear-driven boundary layer in a rotating

tank are presented. Different flows were generated by changing the tank rotation
speed in order to observe Coriolis force effects on the boundary layer. Two kinds of
bottom surfaces were considered: an evenly uniform smooth surface and a transition
from a rough to a smooth wall. The boundary layer and its inner fine structure,
developed in all the experiments, were measured and analysed.

The main boundary layer parameters were estimated in order to properly normalize
the measured variables and to evaluate the Reynolds and the Rossby numbers.

First, the consistency between the experimental results and results from the
boundary layer theory was verified by comparing our measured data with the log-
law and a large-eddy simulation. To this end, a first case with relatively small
rotation velocity was chosen. The results agree with theoretical and numerical model
predictions both for the mean flow and the higher-order turbulence moments.

Then the effect of the rotation was investigated by comparing two experiments
characterized by different rotation periods. The turbulence moments show larger
values in a layer near the wall, which becomes thinner as the tank rotation period
decreases. Thus, the higher rotation speed prevents the turbulent transport developing
outside a layer very close to the wall.

The comparison of the experiments carried out over different kinds of surfaces
show that the rough-to-smooth transition generates, as expected, an internal boundary
layer growing with the distance. In particular, the height of the second-order moment
maximum also increases with the distance and the third-order moment profiles show
a behaviour similar to that found in a canopy. TOMs also indicate the presence of a
large non-local transport triggered by the roughness elements.

Finally, the analysis of the fourth-order moments demonstrates that measured
profiles support the QN hypothesis both over smooth and rough-to-smooth surfaces
(except for the profile closest to the transition), but it fails for flows with greater
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rotation speed. Furthermore the values of the kurtosis plotted versus the skewness
suggest that the rotation acts on the flow as sink of turbulence making the turbulent
layer shallower and more stable. On the contrary, the roughness elements placed
upstream trigger instabilities propagating downstream over the smooth surface.

The authors wish to thank Dr R. Forza for his skilful technical support during the
experimental runs and for maintaining and up-grading the efficiency and reliability
of the experimental apparatus.
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